Saturday, October 09, 2010

A few years ago I blogged a little bit about (Sir) Fred Hoyle and the tendency of some scientists to turn into cranks in the later life ("Fred Hoyle and the Venusian Pox").

Via John Hawks Weblog I came across an interesting article by Robin McKee on whether Hoyle's prickly nature or later lunacy (astronomy joke, sorry, I couldn't resist) cost him the Nobel Prize (his long time collabor Willy Fowler got the Nobel for work that Hoyle and he had done). It is worth reading if you find Hoyle interesting.

Seen from this perspective, Hoyle was the victim of his own intemperate nature, while the Nobel prize committee was guilty of a petty lack of objectivity. But there are other ways of looking at the issue, says British scientist Sir Harry Kroto, winner of the 1996 Nobel prize for chemistry. A Nobel is not just an award for a piece of work but is a recognition of a scientist's overall reputation, he believes . And by that definition, Hoyle – who died in 2001, never having recanted his belief in the steady state theory even when it was clearly demonstrated to be wrong – was unworthy of a prize [emphasis mine].

Rendering equations on the web: MathJax

Previously I've mentioned codecog's online equation editor, which is pretty useful for generating images of LaTeX-rendered equations for use in web pages and powerpoint presentations.

Thanks to the latest version of doxygen, I've just discovered something even more useful: MathJax. It is an open source javascript display engine for math than works in all modern browsers, supports LaTeX and MathML, and allows copy and paste into LaTeX, Word, Mathematic. Wikipedia etc. Pretty amazing.

Monday, August 16, 2010

NAS's Astro2010 Decacal Survey recommendations

The National Academies of Sciences has released its Astro2010 decadal survey report and recommendations. A PDF of the release presentation is also available on that site. The panel's recommendations influence what programs NASA, NSF and DOE pursue and fund in astronomy and astrophysics for the next decade, so this is a big deal.

So far I've only read the presentation, and looked at Steinn Sigurdsson's comments on his blog [1, 2], so what follows is by no means a complete and final assessment.

My personal take is that its a mix of the good and the bad.

Whats good (from my perspective at least):
  • A strong endorsement and emphasis on revitalizing the Explorer class mission program. This had suffered badly under O'Keefe and Griffin.
  • A strong recognition of the importance of feedback, and flows of matter and energy into and out of galaxies (the 8th, 9th, and 10th points on slide 9 of the PDF copy of presensation).
Whats bad:
  • IXO ranks 4th, behind some wide field IR telescope focussed on Dark Energy (yawn, a couple of billion bucks to get one not-very-interesting number) and LISA. IXO will only get $180m in the next decade, so basically that pushes it back to ~2030? And probably kills its chances in the ESA mission rankings too. Given that Constellation-X (IXO's forerunner prior to the merger with ESA) came 2nd (after JWST) in the previous decadal and IXO thought it had a good chance of coming 1st this time the current ranking is a real blow.
  • LISA is somehow ranked as lower risk (and cheaper) than IXO! Seriously?
  • Funding for astrophysics doesn't look like it going to get better.
  • Unless you're an optical/IR astronomer, or the three gravitational wave astronomers, you're in for a bad decade and a half. X-ray astronomy, UV astronomy, and radio seem to be in trouble.
  • From my perspective there is a disconnect between the science priorities for the next decade and the missions endorsed. Feedback and the galaxy/IGM interconnection isn't going to be answered by JWST, WFIRST, LISA or any Explorer mission

Saturday, June 26, 2010

Still alive

I'm still alive, just rather busy settling into the new job and the added commuting. When I have time I'll get back to posting. In the mean time:

Friday, June 11, 2010

Japanese satellite succesfully deploys solar sail

JAXA's IKAROS satellite has successfully deployed it solar sail and is getting power from the thin film solar panels. It'll be another six month's before we'll know whether the next part of the mission, actually being propelled by radiation pressure on the sail, is successful.

The JAXA press release has a really nice graphic explaining how the sail was unfurled.

For more on solar sails, see the SolarSailWiki.

Interesting Astrophysics: June 01 to June 11

This is the final edition of Interesting Astrophysics with me working as a professional astrophysicist, as I start a new job outside astronomy next week. If I have the spare time at home I may try to continue this series, but perhaps at a reduced rate.

Nevertheless, there is some interesting stuff to look at. Molecular gas in starbursts is the subject of the Bothwell et al, Naylor et al, and Feruglio et al papers. In terms of winds, Muzic et al discuss possible/futher evidence of a wind within the central regions of our own galaxy (I still remain somewhat sceptical that the Milky Way hosts a true galactic wind), Kobulnicky & Martin present X-ray observations of the dwarf starburst Henize 2-10, Feruglio et al claim there is a hugely energetic molecular outflow in Markarian 231 that can only be power by an AGN, and Fischer discuss the geometry of the outflow in the central kiloparsec of the Seyfert 2 galaxy Mrk 573. Randall Smith and collaborators have posted two interesting X-ray line diagnostics papers, for all your X-ray spectroscopists out there.

Galaxies and Starbursts

AKARI infrared observations of edge-on spiral galaxy NGC 3079
Mitsuyoshi Yamagishi, Hidehiro Kaneda, Daisuke Ishihara, Shinya Komugi, Takashi Onaka, Toyoaki Suzuki, arXiv:1005.5251 [pdf, ps, other]
Comments: 15 pages, 7 figures, accepted for publication in PASJ

High-resolution CO and radio imaging of ULIRGs: extended CO structures and implications for the universal star formation law
M. S. Bothwell, S. C. Chapman, L. Tacconi, Ian Smail, R. J. Ivison, C. M. Casey, F. Bertoldi, R. Beswick, A. Biggs, A. W. Blain, P. Cox, R. Genzel, T. R. Greve, R. Kennicutt, T. Muxlow, R. Neri, A. Omont, 2010, MNRAS, 405, 219
Full Text: HTML, PDF (Size: 1391K)

From their abstract: "We find a difference in size between the CO and radio emission regions, and as such we suggest that using the spatial extent of the CO emission region to estimate the surface density of star formation may lead to error. This size difference also causes the star formation efficiencies within systems to vary by up to a factor of 5. We also find, with our new accurate sizes, that SMGs lie significantly above the KS relation, indicating that stars are formed more efficiently in these extreme systems than in other high- z star-forming galaxies."

A Census of the High-Density Molecular Gas in M82
B. J. Naylor, C. M. Bradford, J. E. Aguirre, J. J. Bock, L. Earle, J. Glenn, H. Inami, J. Kamenetzky, P. R. Maloney, H. Matsuhara, H. T. Nguyen, J. Zmuidzinas, arXiv:1006.1964 [pdf, ps, other]
Comments: 15 pages (using emulateapj.cls), 6 figures, submitted to the Astrophysical Journal

From their abstract: "We present a three-pointing study of the molecular gas in the starburst nucleus of M82 based on 190 - 307 GHz spectra obtained with Z-Spec at the Caltech Submillimeter Observatory. We measure intensities or upper-limits for 20 transitions, including several new detections of CS, HNC, C2H, H2CO and CH3CCH lines. We combine our measurements with previously-published measurements at other frequencies for HCN, HNC, CS, C34S, and HCO+ in a multi-species likelihood analysis constraining gas mass, density and temperature, and the species' relative abundances. We find some 1.7 - 2.7 x 10^8 M_sun of gas with n_H2 between 1 - 6 x 10^4 cm^-3 and T > 50 K. While the mass and temperature are comparable to values inferred from mid-J CO transitions, the thermal pressure is a factor of 10 - 20 greater."

Their median thermal pressure estimate P/k ~ 106.4 K cm-3 for the molecular gas, is a little lower than our (Strickland & Heckman 2009) estimates for the very hot gas in the starburst (P/k ~107), but for astrophysical work that's actually pretty close - its certainly closer than some other estimates in the literature. Nor would I expect the molecular gas to be in exact thermal pressure equilibrium with the hot gas.

Cometary shaped sources at the Galactic Center - Evidence for a wind from the central 0.2 pc
K. Muzic, A. Eckart, R. Schoedel, R. Buchholz, M. Zamaninasab, arXiv:1006.0909 [pdf, other]
Comments: to appear in A&A

Abstract in full: "In 2007 we reported two cometary shaped sources in the vicinity of Sgr A* (0.8" and 3.4" projected distance), named X7 and X3. The symmetry axes of the two sources are aligned to within 5 degrees in the plane of the sky and the tips of their bow-shocks point towards Sgr A*. Our measurements show that the proper motion vectors of both features are pointing in directions more than 45 deg away from the line that connects them with Sgr A*. This misalignment of the bow-shock symmetry axes and their proper motion vectors, combined with the high proper motion velocities of several 100 km/s, suggest that the bow-shocks must be produced by an interaction with some external fast wind, possibly coming from Sgr A*, or stars in its vicinity. We have developed a bow-shock model to fit the observed morphology and constrain the source of the external wind. The result of our modeling allows us to estimate the velocity of the external wind, making sure that all likely stellar types of the bow-shock stars are considered. We show that neither of the two bow-shocks (one of which is clearly associated with a stellar source) can be produced by influence of a stellar wind of a single mass-losing star in the central parsec. Instead, an outflow carrying a momentum comparable to the one contributed by the ensemble of the massive young stars, can drive shock velocities capable of producing the observed cometary features. We argue that a collimated outflow arising perpendicular to the plane of the clockwise rotating stars (CWS), can easily account for the two features and the mini-cavity. However, the collective wind from the CWS has a scale of >10''. The presence of a strong, mass-loaded outbound wind at projected distances from Sgr A* of <1'' is in fact in agreement with models that predict a highly inefficient accretion onto the central black hole due to a strongly radius dependent accretion flow."

Exploring the Origin and Fate of the Magellanic Stream with Ultraviolet and Optical Absorption

Andrew J. Fox, Bart P. Wakker, Jonathan V. Smoker, Philipp Richter, Blair D. Savage, Kenneth R. Sembach, arXiv:1006.0974 [pdf, ps, other]
Comments: Accepted for publication in ApJ. 18 pages, 7 figures, all in color

From their abstract: "Summing over the low-ion and high-ion phases, we derive conservative lower limits on the ratio N(total H II)/N(H I) of >19 toward NGC 7469 and >330 toward Mrk 335, showing that along these two directions the vast majority of the Stream has been ionized. The presence of warm-hot plasma together with the small-scale structure observed at 21 cm provides evidence for an evaporative interaction with the hot Galactic corona. This scenario, predicted by hydrodynamical simulations, suggests that the fate of the MS will be to replenish the Galactic corona with new plasma, rather than to bring neutral fuel to the disk."

The Diffuse and Compact X-ray Components of the Starburst Galaxy Henize~2-10
Henry A. Kobulnicky, Crystal L. Martin, arXiv:1006.1189 [pdf, ps, other]
Comments: Accepted for publication in The Astrophysical Journal; a version with high-resolution figures can be found at this http URL

From their abstract: "Chandra X-ray imaging spectroscopy of the starburst galaxy Henize 2-10 reveals a strong nuclear point source and at least two fainter compact sources embedded within a more luminous diffuse thermal component. ...Two-temperature solar-composition plasmas (kT~0.2 keV and kT~0.7 keV) fit the diffuse X-ray component as well as single-temperature plasmas with enhanced alpha/Fe ratios. Since the observed radial gradient of the X-ray surface brightness closely follows that of the Halpha emission, the composition of the X-ray plasma likely reflects mixing of the ambient cool/warm ISM with an even hotter, low emission measure plasma, thereby explaining the ~solar ISM composition. Aperture synthesis 21-cm maps show an extended neutral medium to radii of 60" so that the warm and hot phases of the ISM, which extend to ~30", are enveloped within the 8x10^20 /cm^2 contour of the cool neutral medium. This extended neutral halo may serve to inhibit a starburst-driven outflow unless it is predominantly along the line of sight. The high areal density of star formation can also be reconciled with the lack of prominent outflow signatures if Henize 2-10 is in the very early stages of developing a galactic wind."

Black Holes and AGN

Quasar feedback revealed by giant molecular outflows
Chiara Feruglio, Roberto Maiolino, Enrico Piconcelli, Nicola Menci, Herve' Aussel, Alessandra Lamastra, Fabrizio Fiore, arXiv:1006.1655 [pdf, ps, other]
Comments: Submitted for publication in A&A Letters. 4 pages, 3 figures

From their abstract: "We used the IRAM PdBI to observe the CO(1-0) transition in Mrk 231, the closest quasar known. We detect broad wings of the CO line, with velocities up to 750 km/s and spatially resolved on the kpc scale. Such broad CO wings trace a giant molecular outflow of about 2000 MSun/year, far larger than the ongoing star-formation rate (~200 MSun/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Markarian 231 in less than 1e7 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~4e44 erg/s, corresponding to 7% of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe fall short by orders of magnitude to account for the outflow kinetic energy."

There is going to be some skepticism about this paper in the superwind community, given the uncertainties in CO to hydrogen conversion factors. In terms of the larger scale (10+ kpc) superwind Mrk 231 is not that different from other ULIRGs with winds.

Modeling the Outflow in the Narrow-Line Region of Markarian 573: Biconical Illumination of a Gaseous Disk
T. C. Fischer, D. M. Crenshaw, S. B. Kraemer, H. R. Schmitt, M. L. Trippe, arXiv:1006.1875 [pdf]
Comments: 20 pages, 5 figures (1 color), to be published in The Astronomical Journal
Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO)

Abstract in full: "We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of the Seyfert 2 galaxy Mrk 573, and its interaction with an in- ner dust/gas disk, based on Hubble Space Telescope (HST) WFPC2 and STIS observations. From the spectroscopic and imaging information, we determined the fundamental geometry of the outflow and inner disk, via two modeling pro- grams used to recreate the morphology of these regions imaged with HST. We also determined that the bicone of ionizing radiation from the Active Galactic Nucleus (AGN) intersects with the inner disk, illuminating a section of the disk including inner segments of spiral arms, fully seen through structure mapping, which appear to be outflowing and expanding. In addition, we see high velocities at projected distances of \geq 2'' (- 700 pc) from the nucleus, which could be due to rotation or to in situ acceleration of gas off the spiral arms. We find that the true half opening angle of the ionizing bicone (53 degrees) is much larger than the apparent half-opening angle (34 degrees) due to the above geometry, which may apply to a number of other Seyferts as well."

X-ray Astronomy

Ionization Equilibrium Timescales in Collisional Plasmas
Randall K. Smith, John P. Hughes, arXiv:1006.0254 [pdf, ps, other]
Comments: 4 pages, 2 figures. Accepted for publication by the Astrophysical Journal

Full abstract: "Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai (1984) and Hughes & Helfand (1985). In general the ionization evolution of an element Z in a constant electron temperature plasma is given by a coupled set of Z+1 first order differential equations. However, they can be recast as Z uncoupled first order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily-long time"

Hooray, it has finally appeared!

A New Calculation of Ne IX Line Diagnostics

Randall K. Smith, Guo-Xin Chen, Kate Kirby, Nancy S. Brickhouse, arXiv:1006.0667 [pdf, ps, other]
Journal-ref: 2009, ApJ, 700, 679

Their abstract: "We describe the effect that new atomic calculations, including fully-relativistic R-matrix calculations of collisional excitation rates and level-specific dielectronic and radiative recombination rates, have on line ratios from the astrophysically significant ion Ne IX. The new excitation rates systematically change some predicted Ne IX line ratios by 25% at temperatures at or below the temperature of maximum emissivity (4x10^6 K), while the new recombination rates lead to systematic changes at higher temperatures. The new line ratios are shown to agree with observations of Capella and sigma^2 CrB significantly better than older line ratios, showing that 25-30% accuracy in atomic rates is inadequate for high-resolution X-ray observations from existing spectrometers."

This paper is from last year, but worth keeping in mind.

Numerical Astrophysics and Hydrodynamics

Inviscid SPH
Lee Cullen, Walter Dehnen, arXiv:1006.1524 [pdf, ps, other]
Comments: 14 pages (15 in arXiv), 15 figures, accepted for publication in MNRAS

Abstract in full: "In smooth-particle hydrodynamics (SPH), artificial viscosity is necessary for the correct treatment of shocks, but often generates unwanted dissipation away from shocks. We present a novel method of controlling the amount of artificial viscosity, which uses the total time derivative of the velocity divergence as shock indicator and aims at completely eliminating viscosity away from shocks. We subject the new scheme to numerous tests and find that the method works at least as well as any previous technique in the strong-shock regime, but becomes virtually inviscid away from shocks, while still maintaining particle order. In particular sound waves or oscillations of gas spheres are hardly damped over many periods."

Stars, Supernovae and Planets

Atmospheric mass loss by stellar wind from planets around main sequence M stars
Jesus Zendejas, Antigona Segura, Alejandro Raga, arXiv:1006.0021 [pdf, ps, other]
Comments: Icarus, submitted. 18 pages, 6 figures

They conclude that for late type M dwarfs (later than M5),most planets within the habitable zone may have lost their atmospheres in 1 Gyr or less.

The Evolution of Cloud Cores and the Formation of Stars
Avery E. Broderick, Eric Keto, arXiv:1006.0733 [pdf, ps, other]
Comments: 12 pages, 7 figures, submitted to ApJ

Friday, June 04, 2010

Jupiter gets hit again!

Just last year an asteroid hit Jupiter. At that time no one saw the impact directly, but the aftermath was spotted by amateur astronomers.

Now Jupiter has been hit again, and some amateurs astronomers were lucky enough to capture the impact directly. Amazingly awesome.

For more info see this Bad Astronomy post.

Wednesday, June 02, 2010

What I want for my birthday: a table-top X-ray laser

Chad Orzel has a nice post at Uncertain Principles about work at JILA on creating table-top devices that can produce pulses of coherent X-ray emission, i.e. X-ray lasers, with energies of of several hundred eV to ~1 keV.

Given the current difficulties in producing effectively parallel beams of X-ray for use in calibrating X-ray mirrors and detectors this new technology may be very useful.

Friday, May 28, 2010

Interesting Astrophysics: 17 May to 28 May

The final batch of interesting preprints (and a few accepted papers) for May 2010.

Galaxies and Starbursts

Witnessing the Formation of a Brightest Cluster Galaxy in a Nearby X-ray Cluster
Jesper Rasmussen, John S. Mulchaey, Lei Bai, Trevor J. Ponman, Somak Raychaudhury, Ali Dariush, arXiv:1005.3538 [pdf, ps, other]
Comments: 16 pages, 12 figures. ApJ accepted

UV+IR Star Formation Rates: Hickson Compact Groups with Swift and Spitzer
P. Tzanavaris, A. E. Hornschemeier, S. C. Gallagher, K. E. Johnson, C. Gronwall, S. Immler, A. E. Reines, E. Hoversten, J. C. Charlton, arXiv:1005.4059 [pdf, ps, other]
Comments: Accepted by ApJ. [8 Tables, 16 Figures. Color figures have reduced size for ArXiv - emulateapj v. 2/16/10]
Journal-ref: Astrophysical Journal 716 (2010) 556-573

From their abstract: "We present Swift UVOT (1600-3000A) 3-band photometry for 41 galaxies in 11 nearby (<4500km/s) Hickson Compact Groups (HCGs) of galaxies. We use the uvw2-band (2000A) to estimate the dust-unobscured component, SFR_UV, of the total star-formation rate, SFR_T. We use Spitzer MIPS 24-micron photometry to estimate SFR_IR, the dust-obscured component of SFR_T. We obtain SFR_T=SFR_UV+SFR_IR. Using 2MASS K_s band based stellar mass, M*, estimates, we calculate specific SFRs, SSFR=SFR_T/M*. SSFR values show a clear and significant bimodality, with a gap between low (<~3.2x10^-11 / yr) and high SSFR (>~1.2x10^-10 / yr) systems. All galaxies with MIR activity index a_IRAC <= 0 (>0) are in the high- (low-) SSFR locus, as expected if high levels of star-formation power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. All elliptical/S0 galaxies are in the low-SSFR locus, while 22 out of 24 spirals/irregulars are in the high-SSFR locus, with two borderline cases. ... Unlike HCG galaxies, galaxies in a comparison quiescent SINGS sub-sample are continuously distributed both in SSFR and a_IRAC. Any uncertainties can only further enhance the SSFR bimodality. These results suggest that an environment characterized by high galaxy number-densities and low galaxy velocity-dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star-formation processes in galaxies and favoring a fast transition to quiescence."

Radiation pressure from massive star clusters as a launching mechanism for super-galactic winds
Norman Murray, Brice Ménard, Todd A. Thompson, arXiv:1005.4419 [pdf, ps, other]
Comments: Submitted to ApJ, comments welcome
Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO); Galaxy Astrophysics (astro-ph.GA)

Their abstact: "Galactic outflows of low ionization, cool gas are ubiquitous in local starburst galaxies, and in the majority of galaxies at high redshift. How these cool outflows arise is still in question. Hot gas from supernovae has long been suspected as the primary driver, but this mechanism suffers from its tendency to destroy the cool gas as the latter is accelerated. We propose a modification of the supernova scenario that overcomes this difficulty.
Star formation is observed to take place in clusters; in a given galaxy, the bulk of the star formation is found in the ~20 most massive clusters. We show that, for L* galaxies, the radiation pressure from clusters with M>10^6 M_sun is able to expel the surrounding gas at velocities in excess of the circular velocity of the disk galaxy. This cool gas can travel above the galactic disk in less than 2 Myr, well before any supernovae erupt in the driving cluster. Once above the disk, the cool outflowing gas is exposed to radiation, and supernovae induced hot gas outflows, from other clusters in the disk, which drive it to distances of several tens to hundreds of kpc. Because the radiatively driven clouds grow in size as they travel, and because the hot gas is more dilute at large distance, the clouds are less subject to destruction if they do eventually encounter hot gas. Therefore, unlike wind driven clouds, radiatively driven clouds can survive to distances ~50 kpc. We identify these cluster-driven winds with large-scale galactic outflows. Another implication of our model is that only starburst galaxies, where massive clusters reside, are able to drive winds cold outflows on galactic scales via this mechanism. We find that the critical star formation rates above which large scale cool outflows will be launched to be ~0.1 M_sun/yr/kpc^2, which is in good agreement with observations."

I can see a quite a few problems with this line of argumentation. Hopefully I'll get around to addressing them in the monster paper I'm still adding to. Why write three papers when you can just write one absurdly large one?

Black Holes and AGN

"Comets" orbiting a black hole
R. Maiolino, G. Risaliti, M. Salvati, P. Pietrini, G. Torricelli-Ciamponi, M. Elvis, G. Fabbiano, V. Braito, J. Reeves, arXiv:1005.3365 [pdf, ps, other]
Comments: Accepted for publication in A&A. 11 pages, 9 figures

Their abstract: "We use a long (300 ksec), continuous Suzaku X-ray observation of the active nucleus in NGC1365 to investigate the structure of the circumnuclear BLR clouds through their occultation of the X-ray source. The variations of the absorbing column density and of the covering factor indicate that the clouds surrounding the black hole are far from having a spherical geometry (as sometimes assumed), instead they have a strongly elongated and cometary shape, with a dense head (n=10^11 cm^-3) and an expanding, dissolving tail. We infer that the cometary tails must be longer than a few times 10^13 cm and their opening angle must be smaller than a few degrees. We suggest that the cometary shape may be a common feature of BLR clouds in general, but which has been difficult to recognize observationally so far. The cometary shape may originate from shocks and hydrodynamical instabilities generated by the supersonic motion of the BLR clouds into the intracloud medium. As a consequence of the mass loss into their tail, we infer that the BLR clouds probably have a lifetime of only a few months, implying that they must be continuously replenished. We also find a large, puzzling discrepancy (two orders of magnitude) between the mass of the BLR inferred from the properties of the absorbing clouds and the mass of the BLR inferred from photoionization models; we discuss the possible solutions to this discrepancy."

Adaptive optics near infrared integral field spectroscopy of NGC 2992
S. Friedrich, R. I. Davies, E. K. S. Hicks, H. Engel, F. Müller-Sánchez, R. Genzel, L. J. Tacconi, arXiv:1005.4791 [pdf, ps, other]
Comments: 10 pages, 8 figures, accepted for publication in A&amp;A

From their abstract: "NGC 2992 is an intermediate Seyfert 1 galaxy showing outflows on kilo parsec scales which might be due either to AGN or starburst activity. We therefore aim at investigating its central region for a putative starburst in the past and its connection to the AGN and the outflows. Observations were performed with the adaptive optics near infrared integral field spectrograph SINFONI on the VLT, complemented by longslit observations with ISAAC on the VLT, as well as N- and Q-band data from the Spitzer archive. The spatial and spectral resolutions of the SINFONI data are 50 pc and 83 km/s, respectively. ... A simple geometric model of two mutually inclined disks and an additional cone to describe an outflow was developed to explain the observed complex velocity field in H_2 1-0S(1). ... We find a starburst age of 40 Myr - 50 Myr from Br_gamma line diagnostics and the radio continuum; ongoing star formation can be excluded. Both the energetics and the timescales indicate that the outflows are driven by the AGN rather than the starburst. The complex velocity field observed in H_2 1-0S(1) in the central 450 pc can be explained by the superposition of the galaxy rotation and an outflow."

So, the questions remains - is there really an outflow on larger scales too?. The lack of clear cases of purely AGN-driven large scale winds really makes me doubt radiation-driven wind models.

Fading hard X-ray emission from the Galactic Centre molecular cloud Sgr B2
R. Terrier, G. Ponti, G. Belanger, A. Decourchelle, V. Tatischeff, A. Goldwurm, G. Trap, M. R. Morris, R. Warwick, arXiv:1005.4807 [pdf, ps, other]
Comments: Accepted for publication in ApJ. 10 pages, 5 figures

From their abstract: "The centre of our Galaxy harbours a 4 million solar mass black hole that is unusually quiet: its present X-ray luminosity is more than 10 orders of magnitude less than its Eddington luminosity. The observation of iron fluorescence and hard X-ray emission from some of the massive molecular clouds surrounding the Galactic Centre has been interpreted as an echo of a past flare. ... Here we report the observation of a clear decay of the hard X-ray emission from the molecular cloud Sgr B2 during the past 7 years thanks to more than 20 Ms of INTEGRAL exposure. The measured decay time is compatible with the light crossing time of the molecular cloud core . Such a short timescale rules out inverse bremsstrahlung by cosmic-ray ions as the origin of the X ray emission. We also obtained 2-100 keV broadband X-ray spectra by combining INTEGRAL and XMM-Newton data and compared them with detailed models of X-ray emission due to irradiation of molecular gas by (i) low-energy cosmic-ray electrons and (ii) hard X-rays. Both models can reproduce the data equally well, but the time variability constraints and the huge cosmic ray electron luminosity required to explain the observed hard X-ray emission strongly favor the scenario in which the diffuse emission of Sgr B2 is scattered and reprocessed radiation emitted in the past by Sgr A*. Using recent parallax measurements that place Sgr B2 in front of Sgr A*, we find that the period of intense activity of Sgr A* ended between 75 and 155 years ago."

Black Hole Mass, Host galaxy classification and AGN activity
Barry McKernan, K.E.Saavik Ford, Chris Reynolds, arXiv:1005.4907 [pdf, ps, other]
Comments: MNRAS accepted. 14 pages, 11 figures, complete Table 1 in online journal

Theoretical Cosmology

The intergalactic medium over the last 10 billion years I: Lyman alpha absorption and physical conditions
Romeel Davé, Benjamin D. Oppenheimer, Neal Katz, Juna A. Kollmeier, David H. Weinberg, arXiv:1005.2421 [pdf, ps, other]
Comments: 21 pages, submitted to MNRAS

Intergalactic Dust Extinction in Hydrodynamic Cosmological Simulations
Ying Zu, David H. Weinberg, Romeel Davé, Mark Fardal, Neal Katz, Dusan Keres, Benjamin D. Oppenheimer, arXiv:1005.4406 [pdf, ps, other]
Comments: 12 pages, 7 figures, to be submitted to MNRAS

Astrophysical Processes

Secondary ionization and heating by fast electrons
Steven R. Furlanetto and Samuel Johnson Stoever, 2010, MNRAS, 404, 1869
Full Text: HTML, PDF (Size: 720K)

Numerical Astrophysics and Computational Techniques

Searchable Sky Coverage of Astronomical Observations: Footprints and Exposures
Tamas Budavari, Alex Szalay, Gyorgy Fekete, arXiv:1005.2606 [pdf, other]
Comments: 11 pages, 7 figures, submitted to PASP

Their abstract: "Sky coverage is one of the most important pieces of information about astronomical observations. We discuss possible representations, and present algorithms to create and manipulate shapes consisting of generalized spherical polygons with arbitrary complexity and size on the celestial sphere. This shape specification integrates well with our Hierarchical Triangular Mesh indexing toolbox, whose performance and capabilities are enhanced by the advanced features presented here. Our portable implementation of the relevant spherical geometry routines comes with wrapper functions for database queries, which are currently being used within several scientific catalog archives including the Sloan Digital Sky Survey, the Galaxy Evolution Explorer and the Hubble Legacy Archive projects as well as the Footprint Service of the Virtual Observatory."

The Role of Provenance Management in Accelerating the Rate of Astronomical Research

G. Bruce Berriman, Ewa Deelman, arXiv:1005.3358 [pdf, other]
Comments: 8 pages, 1 figure; Proceedings of Science, 2010

Their abstract: "The availability of vast quantities of data through electronic archives has transformed astronomical research. It has also enabled the creation of new products, models and simulations, often from distributed input data and models, that are themselves made electronically available. These products will only provide maximal long-term value to astronomers when accompanied by records of their provenance; that is, records of the data and processes used in the creation of such products. We use the creation of image mosaics with the Montage grid-enabled mosaic engine to emphasize the necessity of provenance management and to understand the science requirements that higher-level products impose on provenance management technologies. We describe experiments with one technology, the "Provenance Aware Service Oriented Architecture" (PASOA), that stores provenance information at each step in the computation of a mosaic. The results inform the technical specifications of provenance management systems, including the need for extensible systems built on common standards. Finally, we describe examples of provenance management technology emerging from the fields of geophysics and oceanography that have applicability to astronomy applications."

Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking
Joseph C. Jacob, et al, arXiv:1005.4454 [pdf, other]
Comments: 16 pages, 11 figures
Journal-ref: Int. J. Computational Science and Engineering. 2009

Their abstract: "Montage is a portable software toolkit for constructing custom, science-grade mosaics by composing multiple astronomical images. The mosaics constructed by Montage preserve the astrometry (position) and photometry (intensity) of the sources in the input images. The mosaic to be constructed is specified by the user in terms of a set of parameters, including dataset and wavelength to be used, location and size on the sky, coordinate system and projection, and spatial sampling rate. Many astronomical datasets are massive, and are stored in distributed archives that are, in most cases, remote with respect to the available computational resources. Montage can be run on both single- and multi-processor computers, including clusters and grids. Standard grid tools are used to run Montage in the case where the data or computers used to construct a mosaic are located remotely on the Internet. This paper describes the architecture, algorithms, and usage of Montage as both a software toolkit and as a grid portal. Timing results are provided to show how Montage performance scales with number of processors on a cluster computer. In addition, we compare the performance of two methods of running Montage in parallel on a grid."

Stars, Supernovae and Planets

Who Pulled the Trigger: a Supernova or an AGB Star?
Alan P. Boss, Sandra A. Keiser, arXiv:1005.3981 [pdf, ps, other]
Comments: 14 pages, 4 figures, 1 table, Astrophysical Journal Letters, in press

Their abstract: "The short-lived radioisotope $^{60}$Fe requires production in a core collapse supernova or AGB star immediately before its incorporation into the earliest solar system solids. Shock waves from a somewhat distant supernova, or a relatively nearby AGB star, have the right speeds to simultaneously trigger the collapse of a dense molecular cloud core and to inject shock wave material into the resulting protostar. A new set of FLASH2.5 adaptive mesh refinement hydrodynamical models shows that the injection efficiency depends sensitively on the assumed shock thickness and density. Supernova shock waves appear to be thin enough to inject the amount of shock wave material necessary to match the short-lived radioisotope abundances measured for primitive meteorites. Planetary nebula shock waves from AGB stars, however, appear to be too thick to achieve the required injection efficiencies. These models imply that a supernova pulled the trigger that led to the formation of our solar system. "

Herschel Observations of the W43 "mini-starburst"
J. Bally, et al, arXiv:1005.4092 [pdf, ps, other]
Comments: 5 pages, 3 figures, accepted for A&amp;A Special Issue

From their abstract: "Aims: To explore the infrared and radio properties of one of the closest Galactic starburst regions. Methods: Images obtained with the Herschel Space Observatory at wavelengths of 70, 160, 250, 350, and 500 microns using the PACS and SPIRE arrays are analyzed and compared with radio continuum VLA data and 8 micron images from the Spitzer Space Telescope. ... Results: The W43 star-forming complex is resolved into a dense cluster of protostars, infrared dark clouds, and ridges of warm dust heated by massive stars. The 4 brightest compact sources with L > 1.5 x 10^4 Lsun embedded within the Z-shaped ridge of bright dust emission in W43 remain single at 4" (0.1 pc) resolution. These objects, likely to be massive protostars or compact clusters in early stages of evolution are embedded in clumps with masses of 10^3 to 10^4 Msun, but contribute only 2% to the 3.6 x 10^6 Lsun far-IR luminosity of W43 measured in a 16 by 16 pc box. The total mass of gas derived from the far-IR dust emission inside this region is ~10^6 Msun. Cometary dust clouds, compact 6 cm radio sources, and warm dust mark the locations of older populations of massive stars. Energy release has created a cavity blowing-out below the Galactic plane."

I wish people would stop calling individual star forming regions, even the biggest ones, starbursts. The term starburst has historically been used to denote significantly enhanced star formation at a galactic scale, and makes most sense when used thusly. See, e.g. Heckman, T., 2005, A&SS, 329, 3.

Evolution of massive stars with pulsation-driven superwinds during the RSG phase
Sung-Chul Yoon, Matteo Cantiello, arXiv:1005.4925 [pdf, ps, other]
Comments: Accepted for publications in ApJ Letters

Interesting to note the significance of pulsation in driving these winds. They're not just steady dust-driven winds. Are there any cases of steady dust-driven winds?

Tuesday, May 18, 2010

3-D supernovae and CP violation

Some cool science news:

1. New simulations of supernova explosions by Müller's group at MPIA show significant differences in behaviour from previous antisymmetric 2-D simulations (MPIA press release, which is also the source of the image shown on the right).

The new computer models of the team at the Max Planck Institute for Astrophysics can now for the first time simulate the complete burst in all three dimensions, from the first milliseconds after the explosion is triggered in the core to a time three hours later, when the shock breaks out of the progenitor star. "We found substantial deviations in our 3D models compared to previous work in 2D," says Nicolay Hammer, the lead author of the paper, "especially the growth of instabilities and the propagation of clumps differ. These are not just minor variations; this effect determines the long-time evolution and ultimately the extent of mixing and observable appearance of core-collapse supernovae."

In the 3D-simulations, metal-rich clumps have much higher velocities than in the 2D case. These "bullets" expand much more rapidly, overtaking material from the outer layers. "With a simple analytic model we could demonstrate that the different geometry of the bullets, toroidal versus quasi-spherical, can explain the differences observed in our simulations," explains co-author Thomas Janka. "While we think that the differences between the 2D- and 3D-models that we found are probably generic, many features will depend strongly on the structure of the progenitor star, the overall energy and the initial asymmetry of the blast."

"We hope that our models, in comparison to observations, will help us to understand how stellar explosions start and what causes them", adds Ewald Müller, the third author of the paper. Investigating a wider variety of progenitor stars and initial conditions will therefore be the focus of future simulation work. In particular, a detailed model that reproduces all observational features of SN 1987A still remains a challenge.
Neat. May also have implications for superwinds, as there again we have a case of the acceleration and motion of dense clumps.

2. The DZero collaboration have found evidence for a 1%-level matter/anti-matter asymmetry (Fermilab press release)., i.e. much larger than previous examples of CP violation.

Friday, May 14, 2010

Interesting Astrophysics: May 03 to May 14

It looks like the Herschel folks have been busy, judged by the deluge of preprints that have appeared on arXiv over the last few weeks. I found Roussel et al's paper on dust in/around M82 and Fischer et al's paper on Markarian 231 (and its molecular outflow) of particular interest.

Nevertheless X-ray-related papers dominate this issue of Interesting Astrophysics, from hot gas in galaxy halos (Mulchaey & Jeltema; Henley et al; Crain et al) to the detection or modelling of the Warm/Hot Intergalactic Medium (Yao et al; Cen & Chisari).

Galaxies and Starbursts

SPIRE imaging of M82: cool dust in the wind and tidal streams
H. Roussel, et al, arXiv:1005.1526 [pdf, ps, other]
Comments: accepted in A&A Herschel special issue

Their abstract in full: "M82 is a unique representative of a whole class of galaxies, starbursts with superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its interaction with the M81 group has stripped a significant portion of its interstellar medium from its disk. SPIRE maps now afford better characterization of the far-infrared emission from cool dust outside the disk, and sketch a far more complete picture of its mass distribution and energetics than previously possible. They show emission coincident in projection with the starburst wind and in a large halo, much more extended than the PAH band emission seen with Spitzer. Some complex substructures coincide with the brightest PAH filaments, and others with tidal streams seen in atomic hydrogen. We subtract the far-infrared emission of the starburst and underlying disk from the maps, and derive spatially-resolved far-infrared colors for the wind and halo. We interpret the results in terms of dust mass, dust temperature, and global physical conditions. In particular, we examine variations in the dust physical properties as a function of distance from the center and the wind polar axis, and conclude that more than two thirds of the extraplanar dust has been removed by tidal interaction, and not entrained by the starburst wind."

The Stellar Kinematic Center and the True Galactic Nucleus of NGC253
F. Müller-Sánchez, O. González-Martín, J. A. Fernández-Ontiveros, J. A. Acosta-Pulido, M. A. Prieto, arXiv:1005.1645 [pdf, ps, other]
Comments: 33 pages, 7 figures, Accepted for publication in ApJ, Version with high resolution figures available at this http URL

Herschel PACS Spectroscopic Diagnostics of Local ULIRGs: Conditions and Kinematics in Mrk 231
Jacqueline Fischer, et al, arXiv:1005.2213 [pdf, other]
Comments: Accepted for publication in the Astronomy and Astrophysics Herschel Special Issue, 5 pages, 4 figures

Full abstract, emphasis mine: "In this first paper on the results of our Herschel PACS survey of local Ultraluminous Infrared Galaxies (ULIRGs), as part of our SHINING survey of local galaxies, we present far-infrared spectroscopy of Mrk 231, the most luminous of the local ULIRGs, and a type 1 broad absorption line AGN. For the first time in a ULIRG, all observed far-infrared fine-structure lines in the PACS range were detected and all were found to be deficient relative to the far infrared luminosity by 1 - 2 orders of magnitude compared with lower luminosity galaxies. The deficits are similar to those for the mid-infrared lines, with the most deficient lines showing high ionization potentials. Aged starbursts may account for part of the deficits, but partial covering of the highest excitation AGN powered regions may explain the remaining line deficits. A massive molecular outflow, discovered in OH and 18OH, showing outflow velocities out to at least 1400 km/sec, is a unique signature of the clearing out of the molecular disk that formed by dissipative collapse during the merger. The outflow is characterized by extremely high ratios of 18O / 16O suggestive of interstellar medium processing by advanced starbursts."

Hot Gas Halos in Early-Type Field Galaxies
John S. Mulchaey, Tesla E. Jeltema, arXiv:1004.5376 [pdf, ps, other]
Comments: Accepted for publication in ApJ Letters

Their abstract: "We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L_X-L_K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L_K < L_star suggests that internal processes such as supernovae driven winds or AGN feedback expel hot gas from low mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L_K < L_star galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds."

A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies

F. Mannucci, G. Cresci, R. Maiolino, A. Marconi, A. Gnerucci, arXiv:1005.0006 [pdf, other]
Comments: 13 pages, submitted to MNRAS
Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO)

Their abstract: "We show that the mass-metallicity relation observed in the local universe is due to a more general relation between stellar mass M*, gas-phase metallicity and SFR. Local galaxies define a tight surface in this 3D space, the Fundamental Metallicity Relation (FMR), with a small residual dispersion of ~0.05 dex in metallicity, i.e, ~12%. At low stellar mass, metallicity decreases sharply with increasing SFR, while at high stellar mass, metallicity does not depend on SFR. High redshift galaxies, up to z~2.5 are found to follow the same FMR defined by local SDSS galaxies, with no indication of evolution. The evolution of the mass-metallicity relation observed up to z=2.5 is due to the fact that galaxies with progressively higher SFRs, and therefore lower metallicities, are selected at increasing redshifts, sampling different parts of the same FMR. By introducing the new quantity mu_alpha=log(M*)-alpha log(SFR), with alpha=0.32, we define a projection of the FMR that minimizes the metallicity scatter of local galaxies. The same quantity also cancels out any redshift evolution up to z~2.5, i.e, all galaxies have the same range of values of mu_0.32. At z>2.5, evolution of about 0.6 dex off the FMR is observed, with high-redshift galaxies showing lower metallicities. The existence of the FMR can be explained by the interplay of infall of pristine gas and outflow of enriched material. The former effect is responsible for the dependence of metallicity with SFR and is the dominant effect at high-redshift, while the latter introduces the dependence on stellar mass and dominates at low redshift. The combination of these two effects, together with the Schmidt-Kennicutt law, explains the shape of the FMR and the role of mu_0.32. The small metallicity scatter around the FMR supports the smooth infall scenario of gas accretion in the local universe."

A fundamental plane for field star-forming galaxies
M.A. Lara-López, J. Cepa, A. Bongiovanni, A.M. Pérez García, A. Ederoclite, H. Castañeda, M. Fernández Lorenzo, M. Póvic, M. Sánchez-Portal, arXiv:1005.0509 [pdf, ps, other]
Comments: Submitted to A&amp;A as a letter to the Editor on April 15, 2010. 4 pages, 4 Figures

Their abstract: "Star formation rate (SFR), metallicity and stellar mass are within the important parameters of star--forming galaxies that characterize their formation and evolution. They are known to be related to each other at low and high redshift in the mass--metallicity, mass--SFR, and metallicity--SFR relations. In this work we demonstrate the existence of a plane in the 3D space defined by the axes SFR [log(SFR)(M_sun yr^-1)], gas metallicity [12+log(O/H)], and stellar mass [log(M_star/M_sun)] of star-forming galaxies. We used star--forming galaxies from the "main galaxy sample" of the Sloan Digital Sky Survey--Data Release 7 (SDSS-DR7) in the redshift range 0.04 < z < 0.1 and r-magnitudes between 14.5 and 17.77. Metallicities, SFRs, and stellar masses were taken from the Max-Planck-Institute for Astrophysics-John Hopkins University (MPA-JHU) emission line analysis database. From a final sample of 44214 galaxies, we find for the first time a fundamental plane for field galaxies relating the SFR, gas metallicity, and stellar mass for star--forming galaxies in the local universe. One of the applications of this plane would be estimating stellar masses from SFR and metallicity. High redshift data from the literature at redshift ~2.2 and 3.5, do not show evidence for evolution in this fundamental plane."

Our Milky Way as a Pure-Disk Galaxy -- A Challenge for Galaxy Formation
Juntai Shen, R. Michael Rich, John Kormendy, Christian D. Howard, Roberto De Propris, Andrea Kunder, arXiv:1005.0385 [pdf, ps, other]
Comments: 5 pages; emulateapj format; submitted to ApJL

Massive star formation in Wolf-Rayet galaxies. V: Star formation rates, masses and the importance of galaxy interactions
Angel R. Lopez-Sanchez
Comments: 33 pages, 21 figures, accepted for publication by A&A

From the abstract: "We have performed a comprehensive analysis of a sample of 20 starburst galaxies, most of them classified as Wolf-Rayet galaxies. In this paper, the last of the series, we analyze the global properties of our galaxy sample using multiwavelength data (X-ray, FUV, optical, NIR, FIR, and radio). The agreement between our Ha-based SFR and those provided by indicators at other wavelengths is remarkable, but we consider that the new Ha-based calibration provided by Calzetti et al. (2007) should be preferred over older calibrations. The FUV-based SFR provides a powerful tool to analyze the star-formation activity in both global and local scales independently to the Ha emission. We provide empirical relationships between the ionized gas mass, neutral gas mass, dust mass, stellar mass, and dynamical mass with the B-luminosity. ... Considering all data, we found that 17 up to 20 galaxies are clearly interacting or merging with low-luminosity dwarf objects or HI clouds. We conclude that interactions do play a fundamental role in the triggering mechanism of the strong star-formation activity observed in dwarf starburst galaxies."

The Dearth of Chemically Enriched Warm-Hot Circumgalactic Gas
Y. Yao, Q. D. Wang, S. V. Penton, T. M. Tripp, J. M. Shull, J. T. Stocke, arXiv:1005.0923 [pdf, ps, other]
Comments: 10 pages, 7 figures, and 5 tables. Accepted for publication in the ApJ, June 2010 - 20 v716 issue.

Argues against a local group origin for the z~0 X-ray absorbers, as have others. Also "These results indicate that the putative CGM [Circum Galactic Medium] in the temperature range of 10^{5.5}-10^{6.3} K may not be able to account for the missing baryons unless the metallicity is less than 10% solar." Of course its probably more accurate to say the mire astronomers believe the missing baryons to be in the warm-hot inter galactic medium, and not within galactic halos at all.

The Origin of the Hot Gas in the Galactic Halo: Confronting Models with XMM-Newton Observations
David B. Henley, Robin L. Shelton, Kyujin Kwak, M. Ryan Joung, Mordecai-Mark Mac Low, arXiv:1005.1085 [pdf, ps, other]
Comments: 18 pages, 13 figures. Submitted to the Astrophysical Journal
Subjects: Galaxy Astrophysics (astro-ph.GA)

Full abstract: "We compare the predictions of three physical models for the origin of the hot halo gas with the observed halo X-ray emission, derived from 26 high-latitude XMM-Newton observations of the soft X-ray background between $l=120\degr$ and $l=240\degr$. These observations were chosen from a much larger set of observations as they are expected to be the least contaminated by solar wind charge exchange emission. We characterize the halo emission in the XMM-Newton band with a single-temperature plasma model. We find that the observed halo temperature is fairly constant across the sky (~1.8e6-2.4e6 K), whereas the halo emission measure varies by an order of magnitude ($\sim$0.0005-0.006 cm^-6 pc), including significant sightline-to-sightline variation on scales as small as a few degrees. When we compare our observations with the model predictions, we find that most of the hot gas observed with XMM-Newton does not reside in an extended hot halo (predicted by disk galaxy formation models), nor is it contained within isolated extraplanar supernova remnants - both these models are at least an order of magnitude too faint in the XMM-Newton band. A model of a supernova-driven interstellar medium, one feature of which is a fountain of hot gas from the disk into the halo, gives the best agreement with the observed 0.4-2.0 keV surface brightness. This model overpredicts the halo X-ray temperature by a factor of ~2. However, there are a several plausible explanations for this discrepancy. Therefore, our general conclusion is that the hot halo gas observed with XMM-Newton originates in a fountain driven into the halo by disk supernovae."

Can galaxy outflows and re-accretion produce a downsizing in the specific star-formation rate of late-type galaxies?
C. Firmani, V. Avila-Reese and A. Rodríguez-Puebla, 2010, MNRAS, 404, 1100
Full Text: HTML, PDF (Size: 685K)

Theoretical Cosmology

Star Formation Feedback and Metal Enrichment History Of The Intergalactic Medium
Renyue Cen, Nora Elisa Chisari, arXiv:1005.1451 [pdf, other]
Comments: 52 pages, 26 figures, submitted to ApJ, all comments welcome

From their abstract: "Using the state-of-the-art cosmological hydrodynamic simulations we compute the metal enrichment history of the intergalactic medium (IGM). Overall, we show that galactic superwind feedback from star formation is able to transport metals to the IGM that matches a broad range of observations. We find ... (6) While gravitational shocks from large-scale structure formation dominate the energy budget (80-90%) for turning about 50% of IGM to the warm-hot intergalactic medium (WHIM) by z=0, galactic superwind feedback shocks are energetically dominant over gravitational shocks at z>1-2. (7) Most of the so-called "missing metals" at z=2-3 are hidden in a warm-hot (T=10^{4.5-7}K) gaseous phase. (8) Approximately (37,46,10,7)% of the total metals at z=0 are in (stars, WHIM, X-ray gas, cold gas); the distribution stands at (23,57,2,18)% and (14,51,4,31)% at z=2 and z=4, respectively."

X-ray coronae in simulations of disc galaxy formation
Robert A. Crain, Ian G. McCarthy, Carlos S. Frenk, Tom Theuns, Joop Schaye, arXiv:1005.1642 [pdf, other]
Comments: 21 pages, 16 figures. Accepted for publication in MNRAS. Accompanying visualisations at this http URL

Their abstract: "The existence of X-ray luminous gaseous coronae around massive disc galaxies is a long-standing prediction of galaxy formation theory in the cold dark matter cosmogony. This prediction has garnered little observational support, with non-detections commonplace and detections for only a relatively small number of galaxies which are much less luminous than expected. We investigate the coronal properties of a large sample of bright, disc-dominated galaxies extracted from the GIMIC suite of cosmological hydrodynamic simulations recently presented by Crain et al. Remarkably, the simulations reproduce the observed scalings of X-ray luminosity with K-band luminosity and star formation rate and, when account is taken of the density structure of the halo, with disc rotation velocity as well. Most of the star formation in the simulated galaxies (which have realistic stellar mass fractions) is fuelled by gas cooling from a quasi-hydrostatic hot corona. However, these coronae are more diffuse, and of a lower luminosity, than predicted by the analytic models of White & Frenk because of a substantial increase in entropy at z ~ 1-3. Both the removal of low entropy gas by star formation and energy injection from supernovae contribute to this increase in entropy, but the latter is dominant for halo masses M_200 <~ 10^(12.5) Msun. Only a small fraction of the mass of the hot gas is outflowing as a wind but, because of its high density and metallicity, it contributes disproportionally to the X-ray emission. The bulk of the X-ray emission, however, comes from the diffuse quasi-hydrostatic corona which supplies the fuel for ongoing star formation in discs today. Future deep X-ray observations with high spectral resolution (e.g. with NeXT/ASTRO-H or IXO) should be able to map the velocity structure of the hot gas and test this fundamental prediction of current galaxy formation theory."

Numerical Astrophysics

Multi-layered configurations in differentially-rotational equilibrium
Kenta Kiuchi, Hiroki Nagakura, Shoichi Yamada, arXiv:1005.2236 [pdf, ps, other]
Comments: To appear on APJ, high-resolution figures are available in the published version.

Full abstract: "We present a new formula to numerically construct configurations in rotational equilibrium, which consist of multiple layers. Each layer rotates uniformly or differentially according to cylindrical rotation-laws that are different from layer to layer. Assuming a different barotropic equation of state (EOS) for each layer, we solve the Bernoulli equation in each layer separately and combine the solutions by imposing continuity of the pressure at each boundary of the layers. It is confirmed that a single continuous barotropic EOS is incompatible with the junction condition. Identifying appropriate variables to be solved, we construct a convergent iteration scheme. For demonstration, we obtain two-layered configurations, each layer of which rotates rapidly with either an "$\Omega$-constant law" or a "$j$-constant law" or a "$v$-constant law". Other rotation laws and/or a larger number of layers can be treated similarly. We hope that this formula will be useful in studying the stellar evolution in multi-dimension with the non-spherical configuration induced by rotation being fully taken into account."

Stars, Supernovae and Planets

On the evolution of a star cluster and its multiple stellar systems following gas dispersal
Nickolas Moeckel and Matthew R. Bate, 2010, MNRAS, 404, 712
Full Text: HTML, PDF (Size: 3726K)

Bursting SN 1996cr's Bubble: Hydrodynamic and X-ray Modeling of its Circumstellar Medium
Vikram V. Dwarkadas, Daniel Dewey, Franz Bauer, arXiv:1005.1090 [pdf, ps, other]
Comments: Accepted to MNRAS. 21 pages, 8 Figures, 6 in color. For a version with higher resolution colour figures see this http URL
Subjects: High Energy Astrophysical Phenomena (astro-ph.HE)

From their abstract: "SN1996cr is one of the five closest SNe to explode in the past 30 years. Due to its fortuitous location in the Circinus Galaxy at ~ 3.7 Mpc, there is a wealth of recently acquired and serendipitous archival data available to piece together its evolution over the past decade, including a recent 485 ks Chandra HETG spectrum. In order to interpret this data, we have explored hydrodynamic simulations, followed by computations of simulated spectra and light curves under non-equilibrium ionization conditions, and directly compared them to the observations. Our simulated spectra manage to fit both the X-ray continuum and lines at 4 epochs satisfactorily, while our computed light curves are in good agreement with additional flux-monitoring data sets. These calculations allow us to infer the nature and structure of the circumstellar medium, the evolution of the SN shock wave, and the abundances of the ejecta and surrounding medium. The data imply that SN 1996cr exploded in a low-density medium before interacting with a dense shell of material about 0.03pc away from the progenitor star."

Radio and X-ray Observations of the Type Ic SN 2007gr Reveal an Ordinary, Non-relativistic Explosion
Alicia M. Soderberg, Andreas Brunthaler, Ehud Nakar, Roger A. Chevalier, arXiv:1005.1932 [pdf, ps, other]
Comments: 14 pages, 6 figures, submitted to ApJ

Again, evidence that the supernova blastwave is expanding into circum-stellar medium shaped by stellar winds.

Generation of radiative knots in a randomly pulsed protostellar jet II. X-ray emission
R. Bonito, S. Orlando, M. Miceli, J. Eislöffel, G. Peres, F. Favata, arXiv:1005.2125 [pdf, ps, other]
Comments: Accepted for publication in Astronomy and Astrophysics

Their abstract: "Protostellar jets are known to emit in a wide range of bands, from radio to IR to optical bands, and to date also about ten X-ray emitting jets have been detected, with a rate of discovery of about one per year. We aim at investigating the mechanism leading to the X-ray emission detected in protostellar jets and at constraining the physical parameters that describe the jet/ambient interaction by comparing our model predictions with observations. We perform 2D axisymmetric hydrodynamic simulations of the interaction between a supersonic jet and the ambient. The jet is described as a train of plasma blobs randomly ejected by the stellar source along the jet axis. We explore the parameter space by varying the ejection rate, the initial jet Mach number, and the initial density contrast between the ambient and the jet. We synthesized from the model the X-ray emission as it would be observed with the current X-ray telescopes. The mutual interactions among the ejected blobs and of the blobs with the ambient medium lead to complex X-ray emitting structures within the jet: irregular chains of knots; isolated knots with measurable proper motion; apparently stationary knots; reverse shocks. The predicted X-ray luminosity strongly depends on the ejection rate and on the initial density contrast between the ambient and the jet, with a weaker dependence on the jet Mach number. Our model represents the first attempt to describe the X-ray properties of all the X-ray emitting protostellar jets. The comparison between our model predictions and the observations can provide a useful diagnostic tool necessary for a proper interpretation of the observations. In particular, we suggest that the observable quantities derived from the spectral analysis of X-ray observations can be used to constrain the ejection rate, a parameter explored in our model that is not measurable by current observations."

Monday, May 03, 2010

Problems with SALT

SciAm online has a short article discussing SALT's (Southern African Large Telescope) ongoing problems with spherical aberration: "Southern Hemisphere's Largest Telescope Hamstrung by Optical Problems" by Bruce Dorminey.

[Image: SALT's 11 meter diameter segmented primary mirror. From the SALT website telescope overview.]

Friday, April 30, 2010

Interesting Astrophysics: Apr 19 to Apr 30

There really haven't been many papers or preprints that have caught my eye over the last two weeks or so, so this edition of Interesting Astrophysics is pretty short. The most interesting (to me) of the bunch are Nobukawa et al - on origin of K shell X-ray line emission in the Galactic Center - and Parkin & Pittard's work on the effects of numerical heat conduction on the dynamics of colliding winds.

Galaxies and Starbursts

The Buried Starburst in the Interacting Galaxy II Zw 096 as Revealed by the Spitzer Space Telescope
Hanae Inami, et al, arXiv:1004.3543 [pdf, ps, other]
Comments: 46 pages, 10 figures, accepted for publication in AJ

Discovery of K-Shell Emission Lines of Neutral Atoms in the Galactic Center Region
Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru, Syukyo G Ryu, Vincent Tatischeff, arXiv:1004.3891 [pdf, ps, other]
Comments: 7 pages, 5 figures, accepted for publication in PASJ (Vol.62, No.2, pp.423--429)

This is potentially important. If the interpretation is correct then we don't have to worry so much about unusual (non-Maxwellian) electron energy distributions creating exotic X-ray spectra, and can also still trust and use more traditional models/processes in interpreting diffuse X-ray emission in galaxies other than the Milky Way. This comes at the price of invoking an explanation that posits substantially higher X-ray luminosities for the Milky Way's central black hole in the past than is observed now.

Their abstract: "The K-shell emission line of neutral irons from the Galactic center (GC) region is one of the key for the structure and activity of the GC. The origin is still open question, but possibly due either to X-ray radiation or to electron bombarding to neutral atoms. To address this issue, we analyzed the Suzaku X-ray spectrum from the GC region of intense neutral iron line emission, and report on the discovery of Kalpha lines of neutral argon, calcium, chrome, and manganese atoms. The equivalent widths of these Kalpha lines indicate that the metal abundances in the GC region should be ~1.6 and ~4 of solar value, depending on the X-ray and the electron origins, respectively. On the other hand, the metal abundances in the hot plasma in the GC region are found to be ~1-2 solar. These results favor that the origin of the neutral Kalpha lines are due to X-ray irradiation."

Note that what they observe is K-alpha emission from neutral Fe, Ar, Ca, Mg and Chrome(!). This is unlike M82 (Griffiths et al 2000, Strickland & Heckman 2007, 2009), where we see Helium-like emission from S, Ar, Ca and Fe, i.e. direct emission from highly ionized gas, not X-ray fluorescence from irradiated neutral atoms.

Relating dust, gas and the rate of star formation in M31
F. S. Tabatabaei, E. M. Berkhuijsen, arXiv:1004.4306 [pdf, ps, other]
Comments: 22 pages accepted for publication in A&amp;A

Black Holes and AGN

X-ray and multiwavelength view of NGC 4278. A LINER-Seyfert connection?
G. Younes, D. Porquet, B. Sabra, N. Grosso, J.N. Reeves, M.G. Allen, arXiv:1004.5134 [pdf, other]
Comments: 14 pages, 15 figures, accepted for publication in Astronomy and Astrophysics

Mid-Infrared Properties of the Swift Burst Alert Telescope Active Galactic Nuclei Sample of the Local Universe. I. Emission-Line Diagnostics
K. A. Weaver, M. Meléndez, R. F. Mushotzky, S. Kraemer, K. Engle, E. Malumuth, J. Tueller, C. Markwardt, C.T. Berghea, R. P. Dudik, L. M. Winter, L. Armus, arXiv:1004.5321 [pdf, ps, other]
Comments: 54 pages, 9 Figures. Accepted for publication in The Astrophysical Journal.

Numerical Astrophysics and Hydrodynamics

Numerical heat conduction in hydrodynamical models of colliding hypersonic flows
E. R. Parkin, J. M. Pittard, arXiv:1004.3753 [pdf, ps, other]
Comments: 14 pages, 10 figures, accepted for publication in MNRAS

Their abstract: "Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-heat gas via sub-shocks as it flows downstream. The resulting reduction in the surface area between adjacent flows, and therefore of the amount of numerical conduction, leads to a commensurate reduction in spurious X-ray emission, though the dynamics of the collision are compromised. The simulation resolution also affects the degree of numerical conduction. A finer resolution better resolves the interfaces of high density and temperature contrast and although numerical conduction still exists the volume of affected gas is considerably reduced. However, since it is not always practical to increase the resolution, it is imperative that the degree of numerical conduction is understood so that inaccurate interpretations can be avoided. This work has implications for the dynamics and emission from astrophysical phenomena which involve high Mach number shocks."

Friday, April 23, 2010

Prompt Global Strike

The NYT has an interesting article about a new weapon system.

WASHINGTON — In coming years, President Obama will decide whether to deploy a new class of weapons capable of reaching any corner of the earth from the United States in under an hour and with such accuracy and force that they would greatly diminish America’s reliance on its nuclear arsenal.

Yet even now, concerns about the technology are so strong that the Obama administration has acceded to a demand by Russia that the United States decommission one nuclear missile for every one of these conventional weapons fielded by the Pentagon. That provision, the White House said, is buried deep inside the New Start treaty that Mr. Obama and President Dmitri A. Medvedev signed in Prague two weeks ago.
Initially I thought this was a pure kinetic energy weapon, but on closer reading its a very large "conventional warhead." The hypersonic glider is very cool though.

Friday, April 16, 2010

Microquasar in M82?

I'm seeing this story all over the Internet. Sadly I don't have time to make much comment on it.

The hard working and often sadly under-appreciated folks at Jodrell Bank have made a splash with news of the sudden appearance of a mysterious radio source (woo!) in M82, which is possibly a microquasar (e.g. like SS 433 in our own Galaxy. *). The official Jodrell Bank press release is definitely the best place to get the background on this exciting discovery, as the press stories tend to be... superficial.

It is unfortunate that the images used in all the press stories I've seen so far, and even the lead image on the Jodrell Bank press release, are NOT actual radio images of M82, let alone images showing the new source, but either the Hubble ACS image (i.e. optical light) or a Spitzer image (near Infra-red light). This is the tyranny of Hubble - its a pretty picture machine, but very often the real science can't be done in the optical. Yet what mission does the public associate with astronomy and astrophysics... Hubble. If your mission or observatory doesn't make pretty pictures, or perish the thought, doesn't make images at all (e.g. FUSE) then you have a public relations problem, and potentially a funding problem.

(*) Sadly the wikipedia entry on SS 433 doesn't do a great job in conveying how interesting and awesome this object is.

Interesting Astrophysics: Apr 05 to Apr 16

The last two weeks have produced quite a number of interesting papers and preprints. Given the diversity I'll let them speak for themselves. Note to self: two papers on cloud statistics.

Galaxies and Starbursts

An Empirical Characterization of Extended Cool Gas Around Galaxies Using MgII Absorption Features
Hsiao-Wen Chen, Jennifer E. Helsby, Jean-Rene Gauthier, Stephen A. Shectman, Ian B. Thompson, Jeremy L. Tinker, arXiv:1004.0705 [pdf, ps, other]
Comments: 20 pages, 13 figures; to appear in the Astrophysical Journal 2010 May 10 issue; a version with higher resolution figures can be found at this http URL

From their abstract: "... The lack of correlation between Wr(2796) and galaxy colors suggests a lack of physical connection between the origin of extended MgII halos and recent star formation history of the galaxies ..."

Seeing Through the Trough: Outflows and the Detectability of Lyman Alpha Emission from the First Galaxies
Mark Dijkstra, Stuart Wyithe, arXiv:1004.2490 [pdf, ps, other]
Comments: 11 pages, 7 figures, submitted to MNRAS

From their abstract: "In this paper we demonstrate that the radiative transfer effects in the interstellar medium (ISM), which cause Lya flux to emerge from galaxies at frequencies where the Gunn-Peterson optical depth is reduced, can substantially enhance the prospects for detection of the Lya line at high redshift. In particular, scattering off outflows of interstellar HI gas can modify the Lya spectral line shape such that >5% of the emitted Lya radiation is transmitted directly to the observer, even through a fully neutral IGM. It may therefore be possible to directly observe `strong' Lya emission lines (EW > 50 Angstrom rest frame) from the highest redshift galaxies that reside in the smallest HII `bubbles' early in the reionization era with JWST. In addition, we show that outflows can boost the fraction of Lya radiation that is transmitted through the IGM during the latter stages of reionization, and even post-reionization."

The Great Observatories All-Sky LIRG Survey: Comparison of Ultraviolet and Far-Infrared Properties
Justin H. Howell, et al, arXiv:1004.0985 [pdf, ps, other]
Comments: 37 pages, 10 figures, accepted for publication in ApJ

From their abstract: "The Great Observatories All-sky LIRG Survey (GOALS) consists of a complete sample of 202 Luminous Infrared Galaxies (LIRGs) selected from the IRAS Revised Bright Galaxy Sample (RBGS). The galaxies span the full range of interaction stages, from isolated galaxies to interacting pairs to late stage mergers. We present a comparison of the UV and infrared properties of 135 galaxies in GOALS observed by GALEX and Spitzer. For interacting galaxies with separations greater than the resolution of GALEX and Spitzer (2-6"), we assess the UV and IR properties of each galaxy individually. The contribution of the FUV to the measured SFR ranges from 0.2% to 17.9%, with a median of 2.8% and a mean of 4.0 +/- 0.4%. The specific star formation rate of the GOALS sample is extremely high, with a median value (3.9*10^{-10} yr^{-1}) that is comparable to the highest specific star formation rates seen in the Spitzer Infrared Nearby Galaxies Survey sample."

Dwarf-Galaxy Cosmology
Regina Schulte-Ladbeck, Ulrich Hopp, Elias Brinks, Andrey Kravtsov, arXiv:1004.1139 [pdf, other]
Comments: This is the editorial paper which introduces the Special Issue on Dwarf-Galaxy Cosmology published in Advances in Astronomy. The issue contains fourteen review papers, and one original research article. All papers were peer-reviewed by a minimum of two referees. To read the Special Issue, please follow this link: this http URL .

Their abstract: "Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology."

Sadly no articles focussing on outflows or supernova feedback.

Comparing Ultraviolet and Infrared-Selected Starburst Galaxies in Dust Obscuration and Luminosity
Lusine A. Sargsyan, Daniel W. Weedman, James R. Houck, arXiv:1004.1551 [pdf, ps, other]
Comments: accepted for publication in The Astrophysical Journal

Concludes that the "obscuration corrections by factors of two to three determined from reddening of the ultraviolet continuum for Lyman Break Galaxies with z > 2 are insufficient, and should be at least a factor of 10 for M(UV) about -17, with decreasing correction for more luminous sources."

A Multi-wavelength analysis of M81: insight on the nature of Arp's loop
A. Sollima, A. Gil de Paz, D. Martinez-Delgado, R.J. Gabany, J. Gallego, T. Hallas, arXiv:1004.1610 [pdf, ps, other]
Comments: 7 pages, 7 figures, accepted for publication by A&amp;A

Their abstract: "The optical ring like structure detected by Arp (1965) around M81 (commonly referenced as "Arp's loop") represents one of the most spectacular feature observed in nearby galaxies. Arp's loop is commonly interpreted as a tail resulting from the tidal interaction between M81 and M82. However, since its discovery the nature of this feature has remained controversial. Aims: Our primary purpose was to identify the sources of optical and infrared emission observed in Arp's loop. Methods: The morphology of the Arp's loop has been investigated with deep wide-field optical images. We also measured its colors using IRAS and Spitzer-MIPS infrared images and compared them with those of the disk of M81 and Galactic dust cirrus that fills the area where M81 is located. Results: Optical images reveal that this peculiar object has a filamentary structure characterized by many dust features overlapping M81's field. The ratios of far-infrared fluxes and the estimated dust-to-gas ratios indicate the infrared emission of Arp's loop is dominated by the contribution of cold dust that is most likely from Galactic cirrus. Conclusions: The above results suggest that the light observed at optical wavelengths is a combination of emission from i) a few recent star forming regions located close to M81, where both bright UV complexes and peaks in the HI distribution are found, ii) the extended disk of M81 and iii) scattered light from the same Galactic cirrus that is responsible for the bulk of the far infrared emission."

I've mentioned the Galactic cirrus emission along the line of sight to the M81/M82 group previously in this blog, as the cirrus is visible even in scattered optical/UV light. Amateur astronomers have termed this cirrus-associated nebulosity Integrated Flux Nebulae.

Black Holes and AGN

Momentum-driven winds and positive AGN feedback
Joe Silk, Adi Nusser, arXiv:1004.0857 [pdf, ps, other]
Subjects: Cosmology and Extragalactic Astrophysics (astro-ph.CO)

Their abstract: "Force balance considerations put a limit on the rate of AGN radiation momentum output, $L/c$, capable of driving galactic superwinds. We show that this condition is insufficient: black holes obeying the observed $\mbh -\sigma $ relation cannot supply enough energy in radiation which can drive the gas out by pressure alone. The shortfall is by up to an order of magnitude in most, but not all, cases. We propose that outflow-triggering of star formation by enhancing the intercloud medium turbulent pressure and squeezing clouds can supply the necessary boost, and suggest possible tests of this hypothesis. We further point out that the time-scales for Bondi accretion and for orbital decay of merging clumps by dynamical friction in the nuclear disk around a central black hole both follow a similar scaling with mass, favoring the most massive black holes, but the latter process is up to two orders of magnitude more rapid at $z\gtsim 10.$ The combination of accretion and coalescence results in earlier formation of more massive black holes, and, in particular, can account for the masses of the black holes inferred to power AGN at $z\sim 6.$"

Molecular clouds: X-ray mirrors of the Galactic nuclear activity
Gabriele Ponti, Regis Terrier, Andrea Goldwurm, Guillaume Belanger, Guillaume Trap, arXiv:1004.1412 [pdf, ps, other]
Comments: 4 pages, "The Galactic Center: A Window on the Nuclear Environment of Disk Galaxies" ASP Conference Series, 2010 eds: M. Morris, D. Q. Wang and F. Yuan

Did the supermassive black hole that currently lurks quietly at the center of our Galaxy flare up about 100 years ago?

Interstellar Medium

The Mass-Size Relation from Clouds to Cores. II. Solar Neighborhood Clouds
Jens Kauffmann, Thushara Pillai, Rahul Shetty, Philip C. Myers, Alyssa A. Goodman, arXiv:1004.1170 [pdf, ps, other]
Comments: accepted to the Astrophysical Journal

I must read this more carefully.

Abstract in full: "We measure the mass and size of cloud fragments in several molecular clouds continuously over a wide range of spatial scales (0.05 < r / pc < 3). Based on the recently developed "dendrogram-technique", this characterizes dense cores as well as the enveloping clouds. "Larson's 3rd Law" of constant column density, m(r) = C*r^2, is not well suited to describe the derived mass-size data. Solar neighborhood clouds not forming massive stars (< 10 M_sun; Pipe Nebula, Taurus, Perseus, and Ophiuchus) obey m(r) < 870 M_sun (r / pc)^1.33 . In contrast to this, clouds forming massive stars (Orion A, G10.15$-$0.34, G11.11$-$0.12) do exceed the aforementioned relation. Thus, this limiting mass-size relation may approximate a threshold for the formation of massive stars. Across all clouds, cluster-forming cloud fragments are found to be---at given radius---more massive than fragments devoid of clusters. The cluster-bearing fragments are found to roughly obey a mass-size law m = C*r^1.27 (where the exponent is highly uncertain in any given cloud, but is certainly smaller than 1.5).

Physical Properties of Giant Molecular Clouds in the Large Magellanic Cloud
A. Hughes, et al, arXiv:1004.2094 [pdf, ps, other]
Comments: 28 pages, 10 figures, accepted by MNRAS

Searching for Diffuse Nonthermal X-Rays from the Superbubbles N11 and N51D in the Large Magellanic Cloud
H. Yamaguchi, M. Sawada, A. Bamba, arXiv:1004.0753 [pdf, ps, other]
Comments: 9 pages, accepted for publication in ApJ.

Their abstract (emphasis mine): "We report on observations of the superbubbles (SBs) N11 and N51D in the Large Magellanic Cloud (LMC) with Suzaku and XMM-Newton. The interior of both SBs exhibits diffuse X-ray emission, which is well represented by thin thermal plasma models with a temperature of 0.2-0.3keV. The presence of nonthermal emission, claimed in previous works, is much less evident in our careful investigation. The 3-sigma upper limits of 2-10keV flux are 3.6*10^{-14}ergs/cm^2/s and 4.7*10^{-14}ergs/cm^2/s for N11 and N51D, respectively. The previous claims of the detection of nonthermal emission are probably due to the inaccurate estimation of the non X-ray background. We conclude that no credible nonthermal emission has been detected from the SBs in the LMC, with the exception of 30 Dor C. "

Hydrodynamics and Numerical Astrophysics

A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence
Daniel J. Price, Christoph Federrath, arXiv:1004.1446 [pdf, ps, other]
Comments: 16 pages, 15 figures, accepted to MNRAS. Associated movies, images and full res version at: this http URL

The Athena Astrophysical MHD Code in Cylindrical Geometry
Aaron Skinner, Eve Ostriker, arXiv:1004.2487 [pdf, ps, other]

Their abstract: "A method for implementing cylindrical coordinates in the Athena magnetohydrodynamics (MHD) code is described. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we present a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web."


The New Hard X-ray Mission
G. Tagliaferri, et al, arXiv:1004.2691 [pdf]
Comments: 9 pages, 5 figures. Accepted for publication on PoS, proceedings of "The Extreme sky: Sampling the Universe above 10 keV", held in Otranto (Italy), 13-17 October 2009

Their abstract: "The Italian New Hard X-ray Mission (NHXM) has been designed to provide a real breakthrough on a number of hot astrophysical issues that includes: black holes census, the physics of accretion, the particle acceleration mechanisms, the effects of radiative transfer in highly magnetized plasmas and strong gravitational fields. NHXM is an evolution of the HEXIT-Sat concept and it combines fine imaging capability up to 80 keV, today available only at E<10 keV, with sensitive photoelectric imaging polarimetry. It consists of four identical mirrors, with a 10 m focal length, achieved after launch by means of a deployable structure. Three of the four telescopes will have at their focus identical spectral-imaging cameras, while X-ray imaging polarimetric cameras will be placed at the focus of the fourth. In order to ensure a low and stable background, NHXM will be placed in a low Earth equatorial orbit. In this paper we provide an overall description of this mission that is currently in phase B."

Stars, Supernovae and Planets

One-sided Outflows/Jets from Rotating Stars with Complex Magnetic Fields

R.V.E. Lovelace, M.M. Romanova, G.V. Ustyugova, A.V. Koldoba, arXiv:1004.0385 [pdf, other]
Comments: 10 pages, 11 figures

Dusty Disks around White Dwarfs I: Origin of Debris Disks
Ruobing Dong, Yan Wang, D. N.C. Lin, X.-W. Liu, arXiv:1004.0696 [pdf, ps, other]
Comments: 38 pages, 7 figures, single column, accepted by ApJ